Name:
ID no.:

$\mathrm{k}=9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$,	$\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$,	$\mathrm{m}_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{Kg}$,
$\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}$	$\mathrm{~m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{Kg}$,	$\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$

Q1: An air filled capacitor of $\mathrm{C}_{0}=10 \mu \mathrm{~F}$ is fully charged using a 12 V battery as shown in the figure. The capacitor is then disconnected from the battery and filled with a dielectric material of $K=4$. The electric potential (in V) across the capacitor after being filled with the dielectric is:

(A) 2
(B) 3
(C) 4
(D) 5
(E) 6

Q2: The density of free electrons in gold is $5.9 \times 10^{28} \mathrm{~m}^{-3}$. A gold wire, 10 mm in diameter and carries a current of 5 A . The drift velocity (in $\mu \mathrm{m} / \mathrm{s}$) of the electrons in the wire is:
(A) 2.7
(B) 4
(C) 5.4
(D) 6.7
(E) 8.1

Q3: In the circuits shown, all batteries have the same $\operatorname{emf}(\mathcal{E})$ and all resistors are equal. In which circuit is the power supplied by the battery greatest?

Q4: In the circuit shown, the capacitor is initially uncharged. The switch S is closed at time $\mathrm{t}=0$. When the charge on the capacitor is $52.76 \mu \mathrm{C}$ the current (in $\mu \mathrm{A}$) in the circuit is:
(A) 3.89
(B) 3.03
(C) 2.36
(D) 1.84
(E) 1.43

Q5: A proton and electron have the same speed (v) and enter a region of uniform magnetic field pointing into the plane of the page as shown in the figure. If the radius of the electron's path $\mathrm{r}_{\mathrm{e}}=0.5 \mathrm{~cm}$ then the radius of the proton's path $\mathrm{r}_{\mathrm{p}}(\mathrm{in} \mathrm{cm})$ is:
(Note: $m_{p} / m_{e}=1833$)

(A) 183.3
(B) 366.6
(C) 550
(D) 733.2
(E) 916.5

Solutions of the above questions

Q1: $Q_{i}=Q_{f} \rightarrow C_{o} \times 12=4 C_{o} \times V \therefore V=3 V$
Q2: $I=A n_{e l} e v_{d}, \quad v_{d}=6.7 \mu \mathrm{~m} / \mathrm{s}$
$P_{\text {supplied }}=P_{\text {dissipated }}=\varepsilon I=\frac{\varepsilon^{2}}{R_{e q}}$, greatest (P) corresponds to lowest $\mathrm{R}_{\text {eq }}$, as in $\operatorname{Fig}(\mathrm{A})$
Q3:
Q4: $Q=C \varepsilon\left(1-e^{-t / \tau}\right)$ and $I=\frac{\varepsilon}{R} e^{-t / \tau}$, then $I=\frac{\varepsilon}{R}\left(1-\frac{Q}{C \varepsilon}\right)=2.36 \mu A$

Q5:
$\left.\begin{array}{l}r_{e}=\frac{m_{e} v_{e}}{e B} \\ r_{p}=\frac{m_{p} v_{p}}{e B}\end{array}\right\} \frac{r_{e}}{r_{p}}=\frac{m_{e}}{m_{p}}, r_{p}=1833 r_{e}=916.5 \mathrm{~cm}$

Problem (1) (30 Marks):

For the circuit shown the switch S is open and the capacitor is uncharged. Find:
(a)- The current I .
$\left.\begin{array}{l}\text { Left loop } 1: 12=I+3 I_{1} \\ \text { Right loop } 2: 12=I+6 I_{2}\end{array}\right\} I_{1}=2 I_{2}$

$$
\begin{aligned}
& 12=\left(I_{1}+I_{2}\right)+3 I_{1}, \quad I_{2}=\frac{12}{9} A, I_{1}=\frac{24}{9} A \\
& \therefore I=4 A
\end{aligned}
$$

(b) The power supplied by the battery.
$P_{s}=\varepsilon I=48 \mathrm{~W}$
(c)- The magnitude of the potential difference between points a and $\mathrm{b}\left(\mathrm{V}_{\mathrm{ab}}\right)$.
$V_{a b}=\sum_{k} I_{k} R_{k}-\sum_{k} \varepsilon_{k}=(-I) \times 1-(-12)=8 V$
or $\quad V_{a b}=\left(I_{1}\right)(3)=8 \mathrm{~V}$

Now the switch S is closed for a long time.
(d)- What will be the current in the 10Ω resistor?

C is fully charged
$\mathrm{I}_{\mathrm{C}}=$ Zero
(e)- Find the charge on the capacitor.

$V_{c}=V_{d e}=\left(I_{2}\right)(4)+\left(-I_{1}\right)(1)$
$=2.667 \mathrm{~V}$
$Q=C V_{C} \simeq 8 \mu c$

Problem (2) (20 Marks):

A rectangular loop of height $\mathrm{h}=0.6 \mathrm{~m}$ and width $\mathrm{w}=0.2 \mathrm{~m}$ lies in the $\mathrm{x}-\mathrm{z}$ plane as shown in the figure. If the loop carries a current of $I=20 \mathrm{~A}$ and is placed in a uniform magnetic field. $\vec{B}=0.3 \hat{i}+0.4 \hat{j}$ (T) (i.e. B lies in the $\mathrm{x}-\mathrm{y}$ plane) then find:
(a)- The magnitude and direction of the magnetic dipole moment (μ) of the loop.

$|\vec{\mu}|=I A=2.4 A \cdot m^{2}$
$\vec{\mu}=2.4 \vec{j}\left(A^{2} m^{2}\right)$
(b)- The initial magnitude and direction of the torque on the loop.

$$
\begin{aligned}
& \vec{\tau}=\vec{\mu} \wedge \vec{B}=2.4 \vec{j} \wedge[0.3 \vec{i}+0.4 \vec{j}] \\
& \vec{\tau}=0.72(-\vec{k}) \text { N.m } \\
& \text { magnitude }=0.72 \mathrm{~N} . \mathrm{m} \\
& \text { direction }=-\vec{k}
\end{aligned}
$$

