DUVCE 102		No.				Sec. ()	
PHYCS 102		Test 1				12/4/2004	
$k=9\times10^9 \text{ Nm}^2/\text{C}^2$, $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2$	$/Nm^2$, e =1	.6×10 ⁻¹⁹ C,	m _e =9.11×	10^{-31} Kg, nC=	10 ⁻⁹ C	
MCQ(/54)	Problem 1 (/16)	Problem 2	2 (/30)	Total (/100)	
If Q=(10,15	es are placed as sh ,20,25) μC and a= c force (N) on the s is:	0.3 m, then	the magn	itude		15) +Q 0 ±Q	
(A) 14.2	(B) 31.8	(C) 56.0	5	(D) 88.4		$a \rightarrow x$	
If Q=(10,15	ges are placed as sh 5,20,25) nC and a= potential (in V) at	= 0.3 m, the	-	-	$+O$ \downarrow .	P ·Q +Q	
(A) 124.3	(B) 186.4	(C) 248	5.5	(D) 310.6	← a →	$a \rightarrow x$	
as shown in and the pote	is released from re the figure. If the p ential difference be	lates separa	ation is d=	0.1 m	V	• • V _f	
 (A) 1.18×10⁷ Q4: A hollow lo carries a su 	etron's speed (in m (B) 1.77×10 ⁷ ong conducting cyl- rface charge densi C) at point P that i	(C) 2.37 indrical she ty σ =8.85 r	7×10 ⁷ ell of radiu nC/m ² . Th	B is: (D) 2.96×10 us a=0.2 m e electric		+	
 (A) 1.18×10⁷ Q4: A hollow lo carries a su 	(B) 1.77×10 ⁷ ong conducting cyl rface charge densi	(C) 2.37 indrical she ty σ =8.85 r	7×10^7 ell of radiu nC/m^2 . Th r = 1,0.8,0.1	B is: (D) 2.96×10 us a=0.2 m e electric		+	
(A) 1.18×10^{7} Q4: A hollow locarries a sufield (in N/4) (A) 200 Q5: For the net of C= 5,12,20,	(B) 1.77×10 ⁷ ong conducting cyl rface charge densi C) at point P that i	(C) 2.37 indrical she ty σ =8.85 r s located at (C) 400 m in the fig ivalent cap	7×10^7 ell of radiu nC/m^2 . Th r = 1,0.8,0.1 ure, If	B is: (D) 2.96×10 us a=0.2 m e electric 5,0.4 m is:	a•	$r \geq$	
(A) 1.18×10^{7} Q4: A hollow locarries a sufield (in N/4) (A) 200 Q5: For the net of C= 5,12,20,	 (B) 1.77×10⁷ (B) 1.77×10⁷ (c) at point P that i (B) 250 (B) 250 (B) capacitors show (B) μF then the equ 	(C) 2.37 indrical she ty σ =8.85 r s located at (C) 400 m in the fig ivalent cap	7×10^7 ell of radiu hC/m ² . Th tr=1,0.8,0. ure, If pacitance	B is: (D) 2.96×10 us a=0.2 m e electric 5,0.4 m is:	a•→ C	$r > 10\mu F$	
(A) 1.18×10^7 Q4: A hollow locarries a sufield (in N/4) (A) 200 Q5: For the net of C= 5,12,20, (in μ F) betw (A) 4 Q6: Two capacitors a	 (B) 1.77×10⁷ (B) 1.77×10⁷ (c) at point P that i (B) 250 (B) 250 (B) 4 point P that the equiveen point a and b 	(C) 2.37 indrical she ty σ =8.85 r s located at (C) 400 m in the fig ivalent cap is: (C) 10 C ₂ =4,6,8,10 tery is remo-	7×10^7 ell of radiu hC/m ² . Th ar=1,0.8,0. oure, If pacitance 0 μ F are ch by ed and th te polarity	B is: (D) 2.96×10 Is a=0.2 m e electric 5,0.4 m is: (D) 500 (D) 15 harged he	a•→ C	$r \geq$	

Problem 1

A thin infinite rod carries uniform linear charge density λ lies along the y axis as shown in the figure. Calculate the electric field at point "P".

II- Find the electric potential at point "p" located on the surface of the conducting inner sphere relative to a point at infinity (Use $V(\infty) = 0$)

III- Find the capacitance of the configuration in terms of a and b.