$\mathrm{k}=9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}, \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}, \mathrm{e}=1.6 \times 10^{-19} \mathrm{C}, \quad \mathrm{m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{Kg}, \mathrm{nC}=10^{-9} \mathrm{C}$

MCQ($/ 54$)	Problem 1 (/16)	Problem 2 (/30)	Total (/100)
			Total ($/ 15$)
Q1: Three charges are placed as shown in the figure. If $\mathrm{Q}=(10,15,20,25) \mu \mathrm{C}$ and $\mathrm{a}=0.3 \mathrm{~m}$, then the magnitude of the electric force (N) on the charge -Q due to the other charges is:			

Q2: Three charges are placed as shown in the figure. If $\mathrm{Q}=(10,15,20,25) \mathrm{nC}$ and $\mathrm{a}=0.3 \mathrm{~m}$, then the electric potential (in V) at point P is:
(A) 124.3
(B) 186.4
(C) 248.5
(D) 310.6

Q3: An electron is released from rest from the negative plate A as shown in the figure. If the plates separation is $\mathrm{d}=0.1 \mathrm{~m}$ and the potential difference between them is $400,900,1600,2500 \mathrm{~V}$ then the electron's speed (in m / s) as it strikes plate B is:
(A) 1.18×10^{7}
(B) 1.77×10^{7}
(C) 2.37×10^{7}
(D) 2.96×10^{7}

Q4: A hollow long conducting cylindrical shell of radius $\mathrm{a}=0.2 \mathrm{~m}$ carries a surface charge density $\sigma=8.85 \mathrm{nC} / \mathrm{m}^{2}$. The electric field (in N / C) at point P that is located at $r=1,0.8,0.5,0.4 \mathrm{~m}$ is:

(A) 200
(B) 250
(C) 400
(D) 500

Q5: For the net of capacitors shown in the figure, If $\mathrm{C}=5,12,20,60 \mu \mathrm{~F}$ then the equivalent capacitance (in $\mu \mathrm{F}$) between point a and b is:

(A) 4
(B) 7.5
(C) 10
(D) 15

Q6: Two capacitors $\mathrm{C}_{1}=2 \mu \mathrm{~F}$ and $\mathrm{C}_{2}=4,6,8,10 \mu \mathrm{~F}$ are charged by a 10 volt battery. If the battery is removed and the
 capacitors are re-connected with opposite polarity as shown in the figure, then the final charge on $\mathrm{C}_{1}($ in $\mu \mathrm{C})$ is:
(A) 6.66
(B) 10
(C) 12
(D) 13.33

Problem 1

A thin infinite rod carries uniform linear charge density λ
lies along the y axis as shown in the figure. Calculate the electric field at point " P ".

Problem 2

A solid charged conducting sphere of radius a and carries a total charge +2 Q is placed inside a charged conducting spherical shell of radii b and c as shown in the figure. If the conducting shell carries a net charge of -2 Q , then:

I- Find the electric field in the following regions:
1- $\mathrm{a}<\mathrm{r}<\mathrm{b}$
2- $b<r<c$
3- r>c

II- Find the electric potential at point " p " located on the surface of the conducting inner sphere relative to a point at infinity (Use $\mathrm{V}(\infty)=0$)

III- Find the capacitance of the configuration in terms of a and b.

