Name:	No.				Sec. () 1/6/2004	
PHYCS 102		Test 2				
$e = 1.6 \times 10^{-19} C$,	m _e =9.1	1×10^{-31} Kg,	mp=1.67×10 ⁻²	²⁷ Kg		-
MCQ(/ 54)	Problem 1 (/ 30) Pro	blem 2 (/ 16)	Total (/100)	7
				Total (/15)	
Q1- In the circui power (in W) di (A) 2	t shown, if ε =(10 ssipated in the 2 s (B) 8), 20, 30, 40) V Ω resistor is: (C) 18	then the (D) 32] ≸10Ω
Q2- In the circuithen the time (i 64% of its final	t shown S is clos n s) it takes the ca charge is:	ed at time t=0, i apacitor to be cl	f C= (2, 5, 8, 10) μ narged by		10 δ MΩ]
(A) 10.2	(B) 25.5	(C) 40.8	(D) 51.1			

Q3-A 10.0-m length of 0.5-mm-radius copper wire carries a current when (0.1, 0.2, 0.3, 0.4) V is applied to its ends. If the resistivity of copper is $1.6 \times 10^{-8} \Omega$.m and the density of free electrons is $8.4 \times 10^{28} \text{ m}^{-3}$, then the drift velocity (in μ m/s) of the free electrons is:

(A) 46.5 (B) 93.0 (C) 139.5 (D) 186.0

Q4-A beam of protons enters a uniform (0.4, 0.3, 0.2, 0.1) -T magnetic field normal to the beam's velocity. The period (in μ s) of rotation of a proton in its circular path is:

(A) 0.16 (B) 0.22 (C) 0.33 (D) 0.65

Q5-A light bulb has tungsten filament of a resistance of 20 Ω when cold at 20 °C. If the operating temperature of the filament is 1500 °C and its temperature coefficient of resistivity $\alpha = 0.0045 \text{ °C}^{-1}$, then the current (in A) passing in the filament when a voltage of (120, 150, 200, 240) V applied is:

(A) 0.78 (B) 0.98 (C) 1.3 (D) 1.56

Q6-The figure shows a circular loop of wire of radius 0.5 m carries a (1, 2, 3, 4)-A current and lies in a 0.2-T magnetic field. The magnitude of magnetic torque (in N.m) on the loop is:

(A) 0.157 (B) 0.314 (C) 0.471 (D) 0.628

<u>Problem 1</u>: Consider the circuit diagram shown nearby and determine:

(a)- the currents I_1 , I_2 , and I_3 .

γγγγ

γγ

γ

Problem 2: A conducting wire of length L=2 m is placed in a magnetic field that varies according to B(x)=0.2 x (where x is in m and B is in T) directed out of the page as shown in the figure. If the current in the conductor is 2 A flowing along +x axis, then;

(a)-indicate the direction of the net magnetic force on the conductor.

(b)-calculate the magnitude of the net magnetic force on the conductor.