$\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$,		$\mathrm{m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{Kg}$,		$\mathrm{m}_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{Kg}$		
MCQ(/54)	Problem 1 (/ 30)	Problem 2 (/ 16)	Total (/100)
					Total (/15)

Q1- In the circuit shown, if $\varepsilon=(10,20,30,40) \mathrm{V}$ then the power (in W) dissipated in the 2Ω resistor is:
(A) 2
(B) 8
(C) 18
(D) 32

Q2- In the circuit shown S is closed at time $t=0$, if $C=(2,5,8,10) \mu F$ then the time (in s) it takes the capacitor to be charged by 64% of its final charge is:
(A) 10.2
(B) 25.5
(C) 40.8
(D) 51.1

Q3-A 10.0 -m length of $0.5-\mathrm{mm}$-radius copper wire carries a current when ($0.1,0.2$, $0.3,0.4) \mathrm{V}$ is applied to its ends. If the resistivity of copper is $1.6 \times 10^{-8} \Omega$.m and the density of free electrons is $8.4 \times 10^{28} \mathrm{~m}^{-3}$, then the drift velocity (in $\mu \mathrm{m} / \mathrm{s}$) of the free electrons is:
(A) 46.5
(B) 93.0
(C) 139.5
(D) 186.0

Q4-A beam of protons enters a uniform ($0.4,0.3,0.2,0.1$) -T magnetic field normal to the beam's velocity. The period (in $\mu \mathrm{s}$) of rotation of a proton in its circular path is:
(A) 0.16
(B) 0.22
(C) 0.33
(D) 0.65

Q5-A light bulb has tungsten filament of a resistance of 20Ω when cold at $20^{\circ} \mathrm{C}$. If the operating temperature of the filament is $1500^{\circ} \mathrm{C}$ and its temperature coefficient of resistivity $\alpha=0.0045{ }^{\circ} \mathrm{C}^{-1}$, then the current (in A) passing in the filament when a voltage of (120, 150, 200, 240) V applied is:
(A) 0.78
(B) 0.98
(C) 1.3
(D) 1.56

Q6-The figure shows a circular loop of wire of radius 0.5 m carries a ($1,2,3,4$)-A current and lies in a $0.2-\mathrm{T}$ magnetic field. The magnitude of magnetic torque (in N.m) on the loop is:
(A) 0.157
(B) 0.314
(C) 0.471
(D) 0.628

Problem 1: Consider the circuit diagram shown nearby and determine:
(a)- the currents $\mathrm{I}_{1}, \mathrm{I}_{2}$, and I_{3}.
(b)- the voltage difference between the two points a and b.

Problem 2: A conducting wire of length $\mathrm{L}=2 \mathrm{~m}$ is placed in a magnetic field that varies according to $\boldsymbol{B}(\boldsymbol{x})=0.2 \boldsymbol{x}$ (where x is in m and B is in T) directed out of the page as shown in the figure. If the current in the conductor is 2 A flowing along +x axis, then;

(a)-indicate the direction of the net magnetic force on the conductor.
(b)-calculate the magnitude of the net magnetic force on the conductor.

