DEPARTMENT OF PHYSICS PHYCS 102

 TEST \# 1

 TEST \# 1}

Tuesday, 4/04/2006
12:00-12:50 pm

Question	Marks	
MCQ	(150)
Problem 1	(/25)
Problem 2	(/25)
Total	(/100)
Total	(/15)

Use BLOCK LETTERS:

Full Name: \qquad

Student ID \#.: \qquad

Section : \qquad

Student Signature: \qquad
Date: April $4^{\text {th }} 2006$

* Use:
$\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$,

$$
\mathrm{m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}, \quad \mathrm{~m}_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}
$$

$\mathrm{k}=9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$,

PART A: MCQs

* Choose the correct answer.
* Each one of the 10 questions carries the same weight (5 Marks).

1) Four charges are placed at the corners of a square of side L as shown in the figure. The direction of the net electric force on the -Q is:
a) A
b) B
c) C
d) D
e) E

2) A hemisphere of radius R is placed in a uniform electric field E directed upward as shown in the figure. The electric flux through the base of the hemisphere is:
a) $R^{2} E$
b) $\pi R^{2} E$
c) zero
d) $4 \pi R^{2} E$
e) $2 \pi R^{2} E$

3) Two infinite sheets carry charge densities as shown in the figure. The net electric field at point A is:
a) zero
b) $\frac{\sigma}{2 \varepsilon_{0}}$
c) $\frac{\sigma}{\varepsilon_{0}}$
d) $\frac{3 \sigma}{2 \varepsilon_{0}}$
e) $\frac{2 \sigma}{\varepsilon_{0}}$

4) A conducting sphere has radius $R=10 \mathrm{~cm}$. If the electric potential on its surface with respect to infinity is 8 V , then the electric potential (in V) at a radial distance $r=5 \mathrm{~cm}$ from its centre is:
a) zero
b) 4
c) 8
d) 12
e) 16
5) The electrostatic potential energy involved in assembling the shown three-charge system is:
a) $\frac{-k Q^{2}}{L}$
b) $\frac{3 k Q^{2}}{L}$
c) zero
d) $\frac{-3 k Q^{2}}{L}$
e) $\frac{7 k Q^{2}}{L}$

6) An electron is released from rest near the negative plate. If the voltage difference between the plates $\mathrm{V}_{\mathrm{ba}}=10 \mathrm{kV}$, what
 would its velocity be when it reaches the positive plate?
a) $8.4 \times 10^{7} \mathrm{~m} / \mathrm{s}$
b) $5.9 \times 10^{7} \mathrm{~m} / \mathrm{s}$
c) $4.2 \times 10^{7} \mathrm{~m} / \mathrm{s}$
d) $7.3 \times 10^{7} \mathrm{~m} / \mathrm{s}$
e) $9.5 \times 10^{7} \mathrm{~m} / \mathrm{s}$

7) For an air filled parallel plate capacitor of plate area $A=10 d^{2}$, where d is the plate separation, the capacitance is:
a) $\frac{10 \varepsilon_{0}}{d}$
b) $\frac{\varepsilon_{0} d}{100}$
c) $100 \varepsilon_{0}$
d) $\frac{\varepsilon_{0} d}{10}$
e) $10 \varepsilon_{0} d$

8) Consider the circuit shown in the figure. If $\mathrm{C}_{1}=5 \mu \mathrm{~F}, \mathrm{C}_{2}=5 \mu \mathrm{~F}, \mathrm{C}_{3}=7.5 \mu \mathrm{~F}$, and $\mathrm{C}_{4}=10 \mu \mathrm{~F}$, then the equivalent capacitance (in $\mu \mathrm{F}$) between point a and b is:
a) 20
b) 15
c) 10
d) 5
e) 1

9) Consider the circuit shown in the figure, the charge Q_{3} on the capacitor C_{3} is:
a) $100 \mu \mathrm{C}$
b) $200 \mu \mathrm{C}$
c) $300 \mu \mathrm{C}$
d) $400 \mu \mathrm{C}$
e) $600 \mu \mathrm{C}$

10) A capacitor with capacitance $5 \mu \mathrm{~F}$ is connected to a battery with $\mathrm{V}_{0}=9 \mathrm{~V}$, as shown in figure (a). The capacitor is disconnected from the battery and is completely filled with a dielectric material with $\mathrm{K}=3$, as shown in figure (b), the potential difference (in V) between the plates will be:
a) 27
b) 3
c) 9
d) 18
e) 6

(a)

Dielectric

(b)

Answers for multiple choices (MCB) of test one

MCQ \#	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Ans	A	C	D

MCQ \#	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
Ans	\mathbf{C}	A	B	E

MCQ \#	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
Ans	D	E	B

PART B: Problems : Each problem carries 25 marks.

Problem \# 1:

A conducting spherical shell of inner radius b and outer radius c has a net charge - Q. A solid conducting sphere of radius a and a net positive charge $2 Q$ is placed inside, at the centre of, the spherical shell as shown in the figure.
a) What is the net charge on the inner surface of the spherical shell? [2.5 Marks]
Ans: -2 Q

Ans: since $\Sigma \mathrm{Q}=2 \mathrm{Q}, \therefore$ From Gausses'

Law: $\mathrm{E}=2 \mathrm{kQ} / \mathrm{r}^{2}$
e) Find the electric field in the region labelled (3) $(b<r<c)$ [4 Marks]

Ans: since $\Sigma \mathrm{Q}=0, \therefore$ From Gausses' Law: $\mathrm{E}=0$
f) Find the electric field in the region labelled (4) $(r>c)$ [4 Marks]

Ans: since $\Sigma Q=\mathrm{Q}, \therefore$ From Gausses' Law: $\mathrm{E}=\mathrm{kQ} / \mathrm{r}^{2}$
g) Plot E versus r from the centre of the solid sphere to $r \gg \boldsymbol{c}$ [4 Marks]

Problem \# 2:

[10 marks] I) Show that the electric potential at a point P located on the axis of a uniformly charged ring of radius a and a linear charge density λ is given as:
$V=k \frac{(2 \pi a \lambda)}{\sqrt{x^{2}+a^{2}}}$

In general:
$V=k \int \frac{d q}{r}$
$V=k \int \frac{d q}{\sqrt{x^{2}+a^{2}}}=\frac{k}{\sqrt{x^{2}+a^{2}}} \int d q$
$\therefore V=\frac{k Q}{\sqrt{x^{2}+a^{2}}}=k \frac{(2 \pi a \lambda)}{\sqrt{x^{2}+a^{2}}}$
II) Two uniformly charged thin rings are placed such that the x-axis passes normally through their centres, as shown in the figure. Ring 1 has a radius $a=30 \mathrm{~cm}$, a uniform linear charge density $\lambda_{1}=+2 \mathrm{nC} / \mathrm{m}$, and is placed at $x=-40 \mathrm{~cm}$. Ring 2 has radius $b=60$ cm , a uniform linear charge density $\lambda_{2}=-1 \mathrm{nC} / \mathrm{m}$, and is placed at $\mathrm{x}=+80 \mathrm{~cm}$.

a) What is the electric potential V, at the origin O (with respect to infinity)? [10 marks]

Voltage at the origin is :
$V_{o}=V_{1}+V_{2}$
$U \sin g$ the derived exp ression of V in \sec tion I :
$V_{o}=k\left\{\left(\frac{2 \pi a \lambda_{1}}{\sqrt{(0.3)^{2}+(0.4)^{2}}}\right)+\left(\frac{2 \pi b \lambda_{2}}{\sqrt{(0.6)^{2}+(0.8)^{2}}}\right)\right\}$
$V_{o}=+67.9 \quad V+(-33.9 V)$
$\therefore V_{o}=33.9 \mathrm{~V} \cong 34 \mathrm{~V}$
b) How much external work, W, is needed to move a charge $q=+5 \mu \mathrm{C}$ from infinity to the origin O? [5 Marks]

$$
\begin{aligned}
& \because W_{e x t}=q\left(V_{o}-V_{\infty}\right) \\
& W_{e x t}=q\left(V_{o}-0\right)=q V_{o} \\
& \therefore W_{e x t}=\left(+5 \times 10^{-6} \mathrm{C}\right) \times(34 \mathrm{~V})=170 \mu \mathrm{~J}
\end{aligned}
$$

