University of Bahrain
College of Science
Dept. of Physics

PHYCS 102
Test One

Summer 02/03
Date: 20/7/2003
Time: 50 min.

Name:-
ID no.
Sec.no.--------

Use: $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}, \quad \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2}, \quad \mathrm{~K}=9 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}^{2}$

1) A point charge $q_{1}=7 \mu \mathrm{C}$ is located at the origin, and a second point charge $\mathrm{q}_{2}=-5.0(-3.0,-2.0,-9.0)$ $\mu \mathrm{C}$ is placed at coordinates $(30,0) \mathrm{cm}$. Calculate the magnitude of electric field (in N / C) at the point P, which has coordinates $(0,40) \mathrm{cm}$.
a) 2.71×10^{5}
b) 3.13×10^{5}
c) 3.38×10^{5}
d) 2.36×10^{5}
2) A small charged ball of mass 2 g and charge $\mathrm{q}=5 \mathrm{nC}$ hang from cord of length $l=15 \mathrm{~cm}$ is inserted between the two parallel charged plates. If the ball is in equilibrium when the cord makes a $5.0^{\circ}\left(7.0^{\circ}, 9.0^{\circ}, 12.0^{\circ}\right)$ angle with the vertical, what is the charge density (in $\mu \mathrm{C} / \mathrm{m}^{2}$) of each plate?
a) 3.1
b) 4.3
c) 5.6
d) 7.5

3) A thin rod bent in the shape of half circle of radius $R=10(20,30,45) \mathrm{cm}$ carries a uniform charge per unit length $\lambda=5 \mathrm{nC} / \mathrm{m}$. Determine the magnitude of electric field (in N/C) at the origin O .
a) 900
b) 450
c) 300
d) 200

4) The magnitude of electrostatic field in the horizontal x direction increases from $E=800(600,700,900) \mathrm{N} / \mathrm{C}$ at $x=0$ to $E=1000$ N/C at $x=2 \mathrm{~m}$. Determine the net charge (in nC) within a cylindrical box of radius 30 cm and length $L=2 \mathrm{~m}$, where the cylinder is oriented so that the curved side is parallel to the field lines (fig.).
a) 0.5
b) 1.0
c) 0.75
d) 0.25

5) A solid, insulating sphere of radius 5.0 cm has a total charge q_{1}. Concentric with this sphere is a conducting hollow sphere whose inner and outer radii are 24.0 cm and 25.0 cm , respectively. The electric field at a point 10.0 cm from the centre is $3.6 \mathrm{kN} / \mathrm{C}$ radially inwards, while the electric field at a point 50.0 cm from the centre is $0.2(0.1,0.125,0.15) \mathrm{kN} / \mathrm{C}$ radially outwards. Find the net charge (in nC) on the hollow conducting sphere.
a) 9.56
b) 6.78
c) 7.47
d) 8.17

6) A rod of length $L=50 \mathrm{~cm}$ lies along the x -axis has a uniform charge density $\lambda=100 \mathrm{nC} / \mathrm{m}$. Calculate the electric potential V (in volts) at the point " P " on the x -axis at a distance $d=10(15,20,25) \mathrm{cm}$ from the
 rod's end.
a) 1612.5
b) 1319.7
c) 1127.5
d) 988.7
7) A conducting sphere of radius 25 cm and charge $8(10,12,14) \mathrm{nC}$. Find the potential difference (in volt) between the centre of the sphere " O " and point P at a distance 40 cm from " O ".
a) 108
b) 135
c) 162
d) 189
8) A $6 \mu \mathrm{C}$ and $-10 \mu \mathrm{C}$ charges are placed $10(12,14,18) \mathrm{cm}$ apart. Find the position (in cm) from the positive charge where the potential is zero.
a) 3.75
b) 4.5
c) 5.25
d) 6.75

Solution for Test 1

1) $E_{1}=K \frac{q_{1}}{r_{1}^{2}}=3.93 \times 10^{5} \mathrm{~N} / \mathrm{C}$
$E_{2}=K \frac{q_{2}}{r_{2}^{2}}=1.80 \times 10^{5} \mathrm{~N} / \mathrm{C}$
$\overrightarrow{E_{1}}=3.93 \times 10^{5} \vec{j} \mathrm{~N} / \mathrm{C}$
$\overrightarrow{E_{2}}=(1.08 i-1.44 \vec{j}) 10^{5} \mathrm{~N} / \mathrm{C}$
$\vec{E}=\overrightarrow{E_{1}}+\overrightarrow{E_{2}}=(1.08 \vec{i}+2.49 \vec{j}) 10^{5} \mathrm{~N} / \mathrm{C}$
$\therefore E=2.71 \times 10^{5} \mathrm{~N} / \mathrm{C}$

2) $\left.\begin{array}{rl}T \sin \theta & =E q \\ T \cos \theta & =m g\end{array}\right\} E=\frac{m g \tan \theta}{q}=4 \times 10^{6} \tan \theta=3.5 \times 10^{5} \mathrm{~N} / C=\frac{\sigma}{E_{o}} \therefore \sigma=3.1 \mu \mathrm{C} / \mathrm{m}^{2}$
3) $E=2 K \frac{\lambda}{R}=1.8 \times 10^{11} \cdot \lambda$
$\therefore E=900 \mathrm{~N} / \mathrm{C}$
4)

$E_{\text {out }}=K \frac{Q}{R^{2}}, Q=\frac{4}{3} \pi R^{3} \rho=100 \mathrm{nC}, \quad E_{\text {out }}=90 \mathrm{kN} / \mathrm{C}$
5) $\vec{E}=K \frac{Q h}{r^{3}} \vec{i}=288 \times 10^{3} \vec{i} \quad N / C, \quad \vec{a}=\frac{q \vec{E}}{m}=2.88 \vec{i} \mathrm{~m} / \mathrm{s}^{2}$
6)

$$
\phi=\phi_{1}+\phi_{2}=A(-800+1000)=\pi(0.3)^{2} 200=56.5=\frac{q_{i n}}{\varepsilon_{o}}
$$

$$
q_{i n}=0.5 n C
$$

7) $E_{1}=k \frac{q_{1}}{r^{2}}, r=0.1 m, q_{1}=4 n C \quad \therefore q_{1}=-4 n C$
$E_{2}=k \frac{q_{1}+q_{2}}{r^{2}}, r=0.5, \therefore q_{1}+q_{2}=5.56 n C \therefore q_{2}=9.56 n C$
8) $V_{p}=\int_{d}^{d+L} K \frac{d q}{x}=K \lambda \ln \frac{L+d}{d}$

$$
V_{p}=1612.5 \mathrm{~V}
$$

9)

$$
\begin{aligned}
V_{o}-V_{b} & =V_{a}-V_{b}=K \frac{Q}{R}-K \frac{Q}{r_{b}} \\
& =108 \mathrm{~V}
\end{aligned}
$$

10) $V_{p}=k\left(\frac{6 \mu}{x}-\frac{10 \mu}{d-x}\right)=0$

$$
x=\frac{6}{16} d=3.75 \mathrm{~cm}
$$

