University of Bahrain
College of Science
Dept of Physics

PHYCS 102
Test Two

Summer 02/03
Date: 10/8/2003
Time:50 min.

Name: \qquad ID no.

Use: $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}, \quad \varepsilon_{o}=8.85 \times 10^{-12} C^{2} / \mathrm{N} . \mathrm{m}^{2}, \quad \mathrm{~K}=9 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}^{2}$

1) A parallel-plate capacitor of plate separation $d=1.0 \mathrm{~mm}$ is filled with an insulator of dielectric constant $\mathrm{k}=2.5(3.0,3.5,4.0)$. The capacitor is charged to a potential difference of 10 V . Find the charge density σ of the capacitor (in $\mathrm{nC} / \mathrm{m}^{2}$).
a) 221.2
b) 265.5
c) 309.7
d) 354.0

Ans: $Q=C V \therefore \sigma=\frac{\varepsilon_{0} k V}{d}=221.2$
2) Three capacitors are connected as shown in the figure where $\mathrm{C}_{1}=0.25 \mu \mathrm{~F}, \mathrm{C}_{2}=0.75 \mu \mathrm{~F}$ and $\mathrm{C}_{3}=(1.0,2.0,3.0$, 4.0) $\mu \mathrm{F}$. Find the charge (in $\mu \mathrm{C}$) on the capacitor C_{3}.
a) 7.5
b) 10.0
c) 11.3
d) 12.0

Ans: $C_{e q}=\left\{\left(C_{1} / / C_{2}\right)=C_{3}\right\}=\frac{1 \times 1}{1+1}=0.5 \mu F ; Q=Q_{3}=C_{e q} \times 15=7.5 \mu \mathrm{C}$

4) Starting from the uncharged state of the shown circuit, the time (in s) that it takes for the charge to reach the value 2.5 $(3.3,3.0,2.0) \times 10^{-5} \mathrm{C}$ is :
a) 1.71×10^{-2}
b) 3.58×10^{-2}
c) 2.58×10^{-2}
d) 1.17×10^{-2}

Ans: $C_{e q}=\frac{3.6 \times 2.4}{3.6+2.4}=1.44 \mu \mathrm{~F}, \tau=R C=1.44 \times 10^{-2} \mathrm{~s}$,

$$
\begin{aligned}
& Q_{o}=C_{e q} \varepsilon=36 \mu C \quad, \quad Q=Q_{o}\left(1-e^{-t / \tau}\right) \\
& t=-\tau \ln \left(1-\frac{Q}{Q_{o}}\right)=1.71 \times 10^{-2} s
\end{aligned}
$$

5) The capacitor $\mathrm{C}_{1}=3 \mu \mathrm{~F}$ that was fully charged to a potential difference of 10 V is now connected to another uncharged capacitor $\mathrm{C}_{2}=1.5(1.0,0.75,0.6) \mu \mathrm{F}$ by closing of the switch S as shown in the figure. Find the final charge of C_{2} (in $\mu \mathrm{C}$).

a) 10.0
b) 7.5
c) 6.0
d) 5.0

Ans:

$$
\left.\begin{array}{r}
Q_{o}=C_{1} V=30 \mu C, 30 \mu=Q_{1}+Q_{2} \\
\frac{Q_{1}}{C_{1}}=\frac{Q_{2}}{C_{2}}
\end{array}\right\} \begin{gathered}
Q_{1}=2 Q_{2} \\
Q_{2}=10 \mu C
\end{gathered}
$$

6) A battery with an electromotive force $\varepsilon=(6,7,8,9) \mathrm{V}$ and internal resistance of 0.5Ω is connected to 4.5Ω resistor. The power (in Watt) consumed by the resistor has a value of:-
a) 6.48
b) 8.82
c) 11.52
d) 14.58

Ans: $\quad P=I^{2} R=\left(\frac{\varepsilon}{R+r}\right)^{2} R=6.48 W$
7) Nicrome wire of radius 0.32 mm , length 1 m , and resistivity $150 \mu \Omega . \mathrm{cm}$. If the electric power dissipated in the wire is $73.6(95.4,120.3,150.7) \mathrm{W}$, find the electric field in $(\mathrm{V} / \mathrm{m})$ inside the wire.
a) 18.5
b) 21.1
c) 23.7
d) 26.5

Ans: $R=\frac{\rho \ell}{A}=4.66 \Omega \quad, \rho=\frac{V^{2}}{R}=\frac{E^{2} \ell^{2}}{R}, E=\frac{\sqrt{P R}}{\ell}=18.5 \mathrm{~V} / \mathrm{m}$
8) A certain light bulb has a tungsten filament with a resistance of 19.0Ω when cold $\left(20^{\circ} \mathrm{C}\right)$ and of (140 , $120,90,70) \Omega$ when hot. Find the temperature $\left({ }^{\circ} \mathrm{C}\right)$ of the filament when hot. (the temperature coefficient of resistivity α is $4.5 \times 10^{-3}{ }^{\circ} \mathrm{C}^{-1}$).
a) 1.44×10^{3}
b) 1.20×10^{3}
c) 850.4
d) 616.5

Ans: $R_{h}=R_{c}[1+\alpha(T-20)], T=\frac{R_{h}-R_{c}}{\alpha \square R_{c}}+20=1435.2^{\circ} \mathrm{C}$
9) In the shown circuit, if $\varepsilon_{1}=21(18,15,12) \mathrm{V}$ and $\varepsilon_{2}=11(8,5,2) \mathrm{V}$, then ε (in volt) is:
a) 12
b) 9
c) 6
d) 3

Ans: $\quad V_{a b}=-1.5 \times 4+21=15 \mathrm{~V}, 15=+1 \times 3+\varepsilon, \varepsilon=12 \mathrm{~V}$
10) In the shown circuit, $\varepsilon_{1}=9(8,6,5) \mathrm{V}$ and $\varepsilon_{2}=12 \mathrm{~V}$. The potential difference V_{ab} across the resistance 6Ω (in volts) is:
a) 9.0
b) 8.73
c) 8.18
d) 7.90

$$
\left.\begin{array}{c}
\\
I_{1}=I_{2}+I_{3} \\
4 I_{2}-6 I_{3}=-9 \\
2 I_{1}+6 I_{3}=12
\end{array}\right\} \Rightarrow I_{3}=1.5 \mathrm{~A}, V_{a b}=1.5 \times 6=9 \mathrm{~V}
$$

