UnIVERSITY OF BAHRAIN
 Physics Department

Electricity and Magnetism - PHYCS 102
Fall 2002-03
Test 1

Name:	I.D.:
Instructor:	Sec.:

Instructor: Sec.:
Time Limit : 1 hour
Useful constants: Permittivity of free space, $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2}$ Coulomb's constant, $\mathrm{k}_{\mathrm{e}}=9 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}^{2}$

Answer all four problems in the space provided.

1- For the circuit shown in the figure, find:

No.	Score	Initial
Total	$=$	$/ 100$

36V
a) The equivalent capacitance between points a and b. (12 points)

$$
\frac{1}{C_{e q}}=\frac{1}{3}+\frac{1}{\left[4+\frac{3 \times 6}{3+6}\right]} \quad, C_{e q}=2 \mu F
$$

$$
\mathrm{C}_{\text {eq }}=2 \mu \mathrm{~F}
$$

b) The charge on capacitor C_{4}. (8 points)

$$
\begin{aligned}
& 36=\frac{Q_{4}}{3 \mu}+\frac{Q_{4}}{6 \mu} \\
& \mathrm{Q}_{4}=72 \mu \mathrm{C}
\end{aligned}
$$

c) The voltage difference across C_{1}.(8 points)

$$
\begin{aligned}
& * 6 \mathrm{~V}_{3}=3 \mathrm{~V}_{4}=3\left(36-\mathrm{V}_{3}\right), \mathrm{V}_{3}=12 \mathrm{~V} \\
& * 3 \mathrm{~V}_{1}=6 \mathrm{~V}_{2}=6\left(12-\mathrm{V}_{1}\right)
\end{aligned}
$$

$$
\therefore \mathrm{V}_{1}=8 \mathrm{~V}
$$

$$
\left|\Delta V_{1}\right|=8 \text { volts }
$$

2) A point charge (+2 Q) is at the center of two spherical concentric thin conducting shells of radii a and b (with $b>a$). If the charge on the outer shell is (-Q) and if the electric field is zero for ($\mathrm{r}>\mathrm{b}$), then determine in terms of r and Q :

a) The charge on the inner conductor. (12 points)
$E=0$, for $r>b$
$\therefore \mathrm{Q}_{\mathrm{a}}+\mathrm{Q}_{\mathrm{b}}+2 \mathrm{Q}=0, \quad \mathrm{Q}_{\mathrm{b}}=-\mathrm{Q}$
$\mathrm{Q}_{\mathrm{a}}=-\mathrm{Q}$
Charge on inner conductor $=-\mathrm{Q}$
b) The magnitude of the electric field at X and Y . (12 points)

$$
\begin{aligned}
& E_{X}=k \frac{2 Q}{r^{2}}, r<a \\
& E_{y}=k \frac{(2 Q-Q)}{r^{2}}, a<r<b
\end{aligned}
$$

$$
E(\text { at point } X)=K 2 Q / r^{2}
$$

$$
\mathrm{E}(\text { at point } \mathrm{Y})=\mathrm{KQ} / \mathrm{r}^{2}
$$

3). A wire of length L that has a uniform positive linear charge density λ is placed on the x-axis as shown in the figure. Assume the electric potential is zero at infinity.
d) Derive an expression for the potential due to this wire at a point P located at the origin . (12 points)
b) A point charge with positive charge Q is now released at point P with zero initial velocity. Determine its kinetic energy when it reaches infinity. (12 points)

a) $\quad V_{p}=k \int_{a}^{a+L} \frac{\lambda d x}{x}=k \lambda \operatorname{Ln}\left(\frac{a+L}{a}\right)$
b) $\quad E_{k}(a t " \infty ")=U_{p}($ at " p " $)=Q V_{p}$

$$
=K Q \lambda L n\left(\frac{a+L}{a}\right)
$$

4) Two point charges $\mathrm{Q}_{1}=-3 \mu \mathrm{C}$ and $\mathrm{Q}_{2}=+3 \mu \mathrm{C}$ are located between two oppositely charged parallel plates. The two point charges are connected by an insulating massless string of length $\mathrm{x}=0.2 \mathrm{~m}$. Assume the electric field produced by the plates is uniform. The plates have surface charge densities, σ, of $+20 \mu \mathrm{C} / \mathrm{m}^{2}$ and $-20 \mu \mathrm{C} / \mathrm{m}^{2}$.

a) Determine the electric field between the plates, ignoring the effects of Q_{1} and Q_{2}. (8 points)

$$
E=\frac{\sigma}{\varepsilon_{o}}=\frac{20 \times 10^{-6}}{8.85 \times 10^{-12}}=2.26 \times 10^{6} \mathrm{~N} / \mathrm{C}
$$

$$
\mathrm{E}=\quad \mathrm{N} / \mathrm{C}
$$

b) Draw a free body diagram for the point charge Q_{1} showing all the forces on it. (8 points)

c) If the two charges stay in equilibrium, find the tension in the string .(8 points)

$$
T=E Q_{1}-K \frac{Q_{1} Q_{2}}{(0.2)^{2}}=4.755 N
$$

