UNIVERSITY OF BAHRAIN

PHYSICS DEPARTMENT

Electricity	/ and	Magnetism	- PHYCS	102

	Fall 2002-03				
	Test 1				
Name:	I.D.:				
Instructor:	Sec.:				
Time Limit : 1 hour			-	·1	
		No.	Score	Initial	
Useful constants:	Permittivity of free space, $\varepsilon_0 = 8.85 \text{ x } 10^{-12} \text{ C}^2/\text{N.m}^2$ Coulomb's constant $k_0 = 9 \text{ x } 10^9 \text{ N m}^2/\text{C}^2$				
Instructor: Time Limit : 1 hour <u>Useful constants</u> :	Sec.: Permittivity of free space, $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N.m}^2$ Coulomb's constant, $k_e = 9 \times 10^9 \text{ N.m}^2/\text{C}^2$	No.	Score	Initial	

Answer all four problems in the space provided.

1- For the circuit shown in the figure, find:

a) The equivalent capacitance between points *a* and *b*. (12 points)

$$\frac{1}{C_{eq}} = \frac{1}{3} + \frac{1}{\left[4 + \frac{3 \times 6}{3 + 6}\right]} , \ C_{eq} = 2\mu F$$

$$C_{eq} = 2 \mu F$$

b) The charge on capacitor C_4 . (8 points)

$$36 = \frac{Q_4}{3\mu} + \frac{Q_4}{6\mu}$$

$$Q_4 = 72 \ \mu C$$

c) The voltage difference across $C_1.(8 \text{ points})$ * $6V_3 = 3V_4 = 3(36 - V_3)$, $V_3 = 12V$ * $3V_1 = 6V_2 = 6(12 - V_1)$ $\therefore V_1 = 8V$

 $|\Delta V_1| = 8 \text{ volts}$

/100

=

2) A point charge (+2Q) is at the center of two spherical concentric thin conducting shells of radii *a* and *b* (with b > a). If the charge on the outer shell is (-Q) and if the electric field is zero for (r > b), then determine in terms of r and Q:

a) The charge on the inner conductor. (12 points)

 $\begin{array}{rll} E=0, & for & r > b \\ \therefore Q_a \,+\, Q_b \,+\, 2Q \,=\, 0 &, \qquad Q_b=-Q \\ Q_a \,=\, -Q \end{array}$

Charge on inner conductor = -Q

b) The magnitude of the electric field at X and Y. (12 points)

$$\begin{split} E_{x} &= k \frac{2Q}{r^{2}}, \ r < a \\ E_{y} &= k \frac{\left(2Q - Q\right)}{r^{2}}, \ a < r < b \end{split}$$

E (at point X) = K $2Q/r^2$

 $E (at point Y) = KQ / r^2$

- 3). A wire of length L that has a uniform positive linear charge density λ is placed on the x-axis as shown in the figure. Assume the electric potential is zero at infinity.
 - d) Derive an expression for the potential due to this wire at a point P located at the origin . (12 points)
 - b) A point charge with positive charge Q is now released at point P with zero initial velocity. Determine its kinetic energy when it reaches infinity. (*12 points*)

a)
$$V_p = k \int_{a}^{a+L} \frac{\lambda dx}{x} = k \lambda Ln \left(\frac{a+L}{a}\right)$$

b)
$$E_k(at^{"}\infty^{"}) = U_p(at^{"}p^{"}) = QV_p$$

$$= KQ\lambda Ln\left(\frac{a+L}{a}\right)$$

V (at point P) = (

K (at infinity) =

4) Two point charges $Q_1 = -3 \mu C$ and $Q_2 = +3 \mu C$ are located between two oppositely charged parallel plates. The two point charges are connected by an insulating massless string of length x = 0.2 m. Assume the electric field produced by the plates is uniform. The plates have surface charge densities, σ , of +20 $\mu C/m^2$ and -20 $\mu C/m^2$.

a) Determine the electric field between the plates, ignoring the effects of Q_1 and Q_2 . (8 points)

$$E = \frac{\sigma}{\varepsilon_o} = \frac{20 \times 10^{-6}}{8.85 \times 10^{-12}} = 2.26 \times 10^6 \, N \,/ C$$

b) Draw a free body diagram for the point charge Q_1 showing all the forces on it. (8 points)

c) If the two charges stay in equilibrium, find the tension in the string .(8 points)

$$T = EQ_1 - K \frac{Q_1 Q_2}{(0.2)^2} = 4.755N$$

lewtons