
Name:.....Section:....

Q1 (10 points) A parallel plate capacitor of plate separation d=1mm and capacitance $C_0=18$ pF is charged by a battery to charge $Q_0=45$ pc. The battery is then disconnected, and the capacitor is half- filled with dielectric of $\kappa=5$, as shown in the figure.

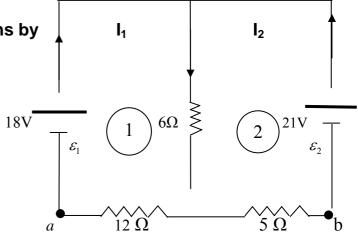
- **a**) Find the equivalent capacitance (*C*).
- **b**) Find the potential difference (*V*) between points *a* and *b*.
- c) Find the electric field (*E*) inside the dielectric.

Solution:

a)
$$C_o = \frac{\varepsilon_o A}{d}, C = C_1 + C_2 = \frac{\varepsilon_o (A/2)k}{d} + \frac{\varepsilon_o (A/2)}{d}$$

$$C = \frac{\varepsilon_o A}{d} \cdot \frac{k+1}{2} = C_o \frac{k+1}{2} = 54\rho F$$

b)
$$Q_o = Q = CV, V = 45 \, pC / 54 \, pF = 0.833V$$


c)
$$E = V/d = 833.3$$
 V/m

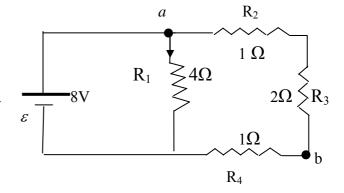
Q2 (10 points) In the shown circuit: (a) Write the loop and juction equations by I_3

applying krichhoff's rules.

(b) If $I_1 = 0.445$ A, find I_2 and I_3 .

- (c) What is the power output of \mathcal{E}_2 ?
- (d) Find the potential between *a* and *b*.

Solution:


- a) $I_1 I_2 + I_3 = 0$ $12I_1 + 6I_2 = 18$ $6I_2 + 5I_3 = 21$
- **b**) $I_2 = 2.11A$ $I_3 = 1.668A$

c)
$$P_{out} = \varepsilon_2 \cdot I_3 = 35.03$$
 W

d) $V_{ab} = -12 I_1 + 5 I_3 = 3V$

Q3 (10 points) In the shown circuit, Find:

- (a) The equivalent resistance.
- (**b**) The current I_1 .
- (c) The potential difference between *a* and *b*.
- (d) The power dissipated in R_3 .

Solution:

a)
$$R_{eq} = \{R_1 / [R_2 = R_3 = R_4]\}$$

$$= \{4//4\} = 2\Omega$$

b)
$$I_1 = 8/R_1 = 2A$$

$$I_2 = \frac{8}{(R_2 + R_3 + R_4)} = 2A, V_{ab} = I_2(R_2 + R_3) = 6V$$

c)

d)
$$P = I_2^2 \cdot R_3 = 8W$$

Useful constants		
$K=9x10^9 N.m^2/C^2$	$\varepsilon_o = 8.854 \times 10^{-12} C^2 / N.m^2,$	$m_e = 9.1 \times 10^{-31} kg$
$M_p = 1.67 \times 10^{-27} kg$	$e = 1.602 \times 10^{-19} C$	$g=10m/s^2$